Indefinite Sturm - Liouville operators with the singular critical point zero

نویسندگان

  • Illya M. Karabash
  • Aleksey S. Kostenko
چکیده

We present a new necessary condition for similarity of indefinite Sturm-Liouville operators to self-adjoint operators. This condition is formulated in terms of Weyl-Titchmarsh m-functions. Also we obtain necessary conditions for regularity of the critical points 0 and∞ of J-nonnegative Sturm-Liouville operators. Using this result, we construct several examples of operators with the singular critical point zero. In particular, it is shown that 0 is a singular critical point of the operator − (sgnx) (3|x|+1)−4/3 d dx2 acting in the Hilbert space L2(R, (3|x|+1)−4/3dx) and therefore this operator is not similar to a self-adjoint one. Also we construct a J-nonnegative Sturm-Liouville operator of type (sgnx)(−d2/dx2 + q(x)) with the same properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral properties of singular Sturm-Liouville operators with indefinite weight sgnx

We consider a singular Sturm-Liouville expression with the indefinite weight sgnx. To this expression there is naturally a self-adjoint operator in some Krein space associated. We characterize the local definitizability of this operator in a neighbourhood of ∞. Moreover, in this situation, the point ∞ is a regular critical point. We construct an operator A = (sgnx)(−d2/dx2 + q) with non-real sp...

متن کامل

Ju n 20 09 A functional model , eigenvalues , and finite singular critical points for indefinite Sturm - Liouville operators

Eigenvalues in the essential spectrum of a weighted Sturm-Liouville operator are studied under the assumption that the weight function has one turning point. An abstract approach to the problem is given via a functional model for indefinite Sturm-Liouville operators. Algebraic multiplicities of eigenvalues are obtained. Also, operators with finite singular critical points are considered. MSC-cl...

متن کامل

Fe b 20 09 A functional model , eigenvalues , and finite singular critical points for indefinite Sturm - Liouville operators

Eigenvalues in the essential spectrum of a weighted Sturm-Liouville operator are studied under the assumption that the weight function has one turning point. An abstract approach to the problem is given via a functional model for indefinite Sturm-Liouville operators. Algebraic multiplicities of eigenvalues are obtained. Also, operators with finite singular critical points are considered. MSC-cl...

متن کامل

Eigenfunction expansion in the singular case for q-Sturm-Liouville operators

In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.

متن کامل

On‎ ‎inverse problem for singular Sturm-Liouville operator with‎ ‎discontinuity conditions

‎In this study‎, ‎properties of spectral characteristic are investigated for‎ ‎singular Sturm-Liouville operators in the case where an eigen‎ ‎parameter not only appears in the differential equation but is‎ ‎also linearly contained in the jump conditions‎. ‎Also Weyl function‎ ‎for considering operator has been defined and the theorems which‎ ‎related to uniqueness of solution of inverse proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008